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Research

Acute exposures to particulate and gaseous 
air pollutants have been associated with mor
bidity and mortality in a large number of 
timeseries studies [Pope and Dockery 2006; 
U.S. Environmental Protection Agency (EPA) 
1993, 2004]. There are fewer cohort studies 
where it has been possible to examine the asso
ciation of longterm exposures and mortality 
(Dockery et al. 1993; Finkelstein et al. 2003; 
Hoek et al. 2002; Jerrett et al. 2005b, 2005c; 
Laden et al. 2006; Lipfert et al. 2006; Miller 
et al. 2007; Nafstad et al. 2004; Nyberg et al. 
2000; Pope et al. 1995, 2004; Rosenlund et al. 
2006). In most longterm studies, exposure 
assessment has been limited mainly to city
specific average pollution measures or spatial 
or geographic information system (GIS)‒based 
exposure models in small geographic areas 
(Adar and Kaufman 2007; Brauer et al. 
2003; Briggs et al. 2000; Jerrett et al. 2005a; 
Liao et al. 2006; Ryan and LeMasters 2007; 
Su et al. 2008; Wheeler et al. 2008; Wong 
et al. 2004). One recent study has described 
a monthly spatiotemporal exposure model for 
the northeastern United States using a com
bination of spatial and GISderived covari
ates that outperformed models with spatial 

smoothing alone (Yanosky et al. 2008, 2009). 
Another recent report has detailed the use of 
universal kriging to predict pollution levels for 
the European Union (Beelen et al. 2009). The 
purpose of this analysis is to develop nation
wide models of annual exposure to particulate 
matter < 10 µm in diameter (PM10) and nitro
gen dioxide, using a combination of spatial 
smoothing and regression of GISderived cova
riates. To date, few countrywide models have 
been available for these pollutants over our 
time scale of interest (1985‒2000). We apply 
the model to the addresses of the workers in 
the Trucking Industry Particle Study (Garshick 
et al. 2008; Laden et al. 2007), a retrospective 
cohort study of male U.S. unionized trucking 
company workers, to illustrate its potential use 
in exposure assessment for longterm epide
miologic studies with members spread over the 
continental United States.

Methods
The Trucking Industry Particle Study. Details 
of the Trucking Industry Particle Study 
(TrIPS) are provided elsewhere (Garshick 
et al. 2008; Laden et al. 2007). Briefly, using 
personnel records from four large companies 

we identified 54,973 males with at least 1 day 
of work in 1985. Information was avail
able on demographic variables, daily job and 
work location, and residential home address. 
Using an outside vendor (TeleAtlas, Lebanon, 
NH), we geocoded the last known residential 
addresses of 53,822 members living within the 
continental United States to at least the ZIP 
code level. 

Pollutant data. We obtained information 
on annual average PM10 (parameter codes 
81102 and 85101) and NO2 from the U.S. 
EPA Air Quality System (AQS). The U.S. 
EPA provided these annual averages on a set 
of DVDs compiled in 2004 for U.S. EPA 
Science to Achieve Results program grant 
830545010. Data from 1985‒2000 were 
used for this study if an annual mean was 
reported, regardless of the primary monitor
ing objective of the monitor. All monitors in 
the continental United States were included, 
because excluding monitors such as those 
located near point or mobile sources would 
prevent us from incorporating all sources of 
spatial variability represented in the monitor
ing network. Latitude and longitude of each 
monitor were obtained from the AQS data
base and used to map the monitor locations 
using ArcGIS (version 9.2; ESRI, Redlands, 
CA). All monitors were checked for latitude/
longitude accuracy and precision to the county 
level before inclusion.

Modeling approach. We used generalized 
additive models (GAMs) to predict annual 
outdoor levels of PM10 and NO2 using smooth 
spatial surfaces and GISderived covariates. 
GAMs use semiparametric methods to model 
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Background: Epidemiologic studies of air pollution have demonstrated a link between long-term 
air pollution exposures and mortality. However, many have been limited to city-specific average pol-
lution measures or spatial or land-use regression exposure models in small geographic areas.

oBjectives: Our objective was to develop nationwide models of annual exposure to particulate 
matter < 10 µm in diameter (PM10) and nitrogen dioxide during 1985‒2000.

Methods: We used generalized additive models (GAMs) to predict annual levels of the pollutants 
using smooth spatial surfaces of available monitoring data and geographic information system‒
derived covariates. Model performance was determined using a cross-validation (CV) procedure 
with 10% of the data. We also compared the results of these models with a commonly used spatial 
interpolation, inverse distance weighting.

results: For PM10, distance to road, elevation, proportion of low-intensity residential, high-
intensity residential, and industrial, commercial, or transportation land use within 1 km were all 
statistically significant predictors of measured PM10 (model R2 = 0.49, CV R2 = 0.55). Distance to 
road, population density, elevation, land use, and distance to and emissions of the nearest nitrogen 
oxides–emitting power plant were all statistically significant predictors of measured NO2 (model R2 
= 0.88, CV R2 = 0.90). The GAMs performed better overall than the inverse distance models, with 
higher CV R2 and higher precision.

conclusions: These models provide reasonably accurate and unbiased estimates of annual expo-
sures for PM10 and NO2. This approach provides the spatial and temporal variability necessary to 
describe exposure in studies assessing the health effects of chronic air pollution.
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nonlinear, onedimensional, and multi
dimensional functions using penalized splines 
(Hastie and Tibshirani 1990; Wood 2003, 
2004, 2006). For both pollutants, models 
were constructed using 90% of the available 
monitoring locations for each calendar year. 
The remaining randomly selected 10% of 
monitors were used to perform crossvalida
tion as described below.

First, the average spatial surface for each 
pollutant, 1985‒2000, was generated in a 
GAM containing a bivariate thinplate spline 
of the projected x and ycoordinates of the 
monitoring locations and indicator variables 
for calendar year to adjust for temporal trends 
(Wood 2006). To obtain information on fine
scale longterm spatial patterns, we included 
onedimensional penalized splines for a priori 
selected GISderived timeinvariant covariates. 
The covariates we considered included distance 
to road, population density, elevation, sur
rounding land use, distance to and emission 
from power plants, and variables for census 
region of the country (northeast, west, south, 
and midwest) to adjust for regional patterns. 
These variables have previously been shown to 
be important predictors of ambient pollution 
(Adar and Kaufman 2007; Jerrett et al. 2005a; 
Ryan and LeMasters 2007; Yanosky et al. 
2008, 2009). Each characteristic was assigned 
to the monitoring locations using ArcGIS.

Information from the StreetMap data set 
(ESRI) was used to determine distance to the 
nearest road. Road segments were first classi
fied by U.S. Census Feature Class Code as A1 
(primary roads, typically interstates, with lim
ited access), A2 (primary major, noninterstate 
roads), or A3 (smaller, secondary roads, usu
ally with more than two lanes) (U.S. Census 
Bureau 1993). The distance from each location 
to the nearest road of each road class was then 
calculated in meters. Land use data were com
piled from the U.S. Geological Survey (USGS) 
1992 National Land Cover Dataset (USGS 
2007b), which provides data on 19 categories 
of land use in raster image files with 1 arcsec 
(about 30 m) spatial resolution (Vogelmann 
et al. 2001). The proportion of lowintensity 
residential, highintensity residential, and 
industrial/commercial/transportation land 
uses within 1 km of each location was calcu
lated. Population density values were assigned 
to each monitoring location using data from 
the 2000 U.S. Census at the block group level 
(U.S. Census Bureau 1993). Elevation data for 
each location were compiled from the USGS 
National Elevation Dataset (USGS 2007a). 
Information on the tons of nitrogen oxides 
emitted annually from all U.S. power plants in 
2004 was obtained from the U.S. EPA 2006 
Emissions and Generation Resource Integrated 
Database (U.S. EPA 2007a). The distance to 
and the emissions from the nearest facility were 
 determined for each NO2  monitoring location.

Each potential covariate (or groups of 
covariates for distance to road, land use, and 
power plant distance/emissions) was first con
sidered separately in models that included 
the bivariate spline for the 1985‒2000 spa
tial surface and the indicator variables for 
calendar year. We constructed multivariate 
models including all covariates that were sta
tistically significant (p < 0.05) and led to a 
higher adjusted model R2. If covariates were 
no longer significant when included in the 
multivariate model, we omitted them unless 
they led to better model fit as determined 
by Akaike’s information criterion (AIC) and 
crossvalidation testing.

To assess annual differences from the long
term spatial patterns of pollution, we first cal
culated the residuals from the final longterm 
multivariate GAM models. Then, for each 
calendar year, we created a bivariate smooth 
of the residuals using a twodimensional thin
plate spline. Therefore, the annual average 
pollution at any location was predicted using 
the sum of the prediction from the longterm 
average surface/GISderived covariates and 
the prediction from the calendaryear specific 
residual spatial variability surface. 

To perform crossvalidation, we used 
regression parameters from the final mod
els and the annual spatial surfaces to predict 
annual pollutant levels at the 10% of moni
toring locations that were held out from the 
original models. We assessed the potential 
bias of each final model by calculating the 
prediction error as the difference between the 
observed and predicted values at each cross
validation monitoring location. We also 
assessed bias in the models by examining the 
intercept and slopes from linear regression 
of the predicted values on the measured val
ues. The precision of the model was estimated 
by taking the square root of the mean of the 

squared prediction errors (RMSPE). In addi
tion, a crossvalidation R2 was obtained using 
the squared Pearson correlation between the 
measured values at the heldout observations 
and the model predictions. 

For comparison, we also predicted expo
sures using a simpler spatial interpolation 
method, inverse distance weighting (IDW), 
which had been frequently used in the air 
pollu tion literature. For the IDW models, 
the annual predictions for any given location 
(crossvalidation monitor location or cohort 
member address) were calculated by taking the 
average of the measured value at each moni
tor location times the inverse of the squared  
distance between each location and each mon
itor. IDW modeling was performed in ArcGIS 
(Johnston et al. 2004). The bias and precision 
of this simpler exposure modeling method was 
determined using crossvalidation. 

After the final GAM models were deter
mined and crossvalidated, the regression 
parameters were used to predict annual pollut
ant levels at the 53,822 residential addresses of 
the TrIPS cohort members. For comparison, 
IDW was also used to predict annual pollut
ant levels at the residential addresses. Statistical 
analyses were performed in PC SAS version 
9.1 (SAS Institute Inc. 2006) and Unix R 
2.7.0 (R Development Core Team 2006).

Results
The number of monitors used in the models 
and annual distributions of pollutant levels 
are shown in Table 1. The levels of both pol
lutants decreased over time. The median value 
of PM10 in 1985 was 38.2 µg/m3, and it fell 
to 23.0 µg/m3 by 2000 (a 40% decrease). The 
median NO2 level decreased 23% over the 
same period, from 19.0 ppb to 14.6 ppb. The 
distributions of the GISderived covariates at 
the monitor locations considered in the GAM 

Table 1. Number and percentile distribution of measured annual mean values for all PM10 and NO2 monitors 
included in the generalized additive and inverse distance weighted models.

PM10 (µg/m3) NO2 (ppb)
Year No. 5th 25th 50th 75th 95th  No. 5th 25th 50th 75th 95th
1985 369 18.0 30.1 38.2 46.9 84.4 320 3.3 11.1 19.0 24.9 39.2
1986 567 20.6 30.2 37.5 45.6 72.9 310 3.3 10.1 18.3 24.6 35.2
1987 881 19.2 28.1 34.8 42.1 61.5 268 3.4 11.9 19.3 26.2 39.3
1988 996 17.1 25.8 32.0 39.7 56.7 298 3.0 10.1 18.9 26.1 39.1
1989 1,127 15.0 25.8 30.9 37.5 57.1 308 3.1 12.0 19.6 26.2 38.9
1990 1,319 13.7 22.3 27.3 34.1 48.3 326 3.7 10.1 17.4 23.4 35.4
1991 1,379 13.3 22.9 27.8 33.7 47.9 325 3.3 9.8 16.2 23.8 34.5
1992 1,509 12.2 20.9 25.3 31.0 43.5 339 3.4 10.1 16.3 22.8 35.0
1993 1,513 11.6 20.1 24.9 29.6 42.1 357 3.7 9.1 15.9 22.2 33.9
1994 1,595 12.4 20.2 24.7 30.0 42.4 363 3.7 9.4 16.4 23.5 34.7
1995 1,641 11.3 18.9 23.6 29.1 42.5 373 3.8 9.5 16.0 21.8 33.0
1996 1,659 12.1 19.1 23.3 27.9 41.4 380 3.8 9.2 15.6 21.5 33.5
1997 1,737 11.0 18.9 22.8 27.6 43.2 385 4.0 9.2 14.7 20.0 32.4
1998 2,722 11.8 19.4 23.5 28.3 41.8 400 3.7 8.9 14.5 20.4 32.5
1999 2,419 11.4 18.9 23.7 29.0 50.6 400 3.8 9.5 15.8 21.8 32.5
2000 2,133 11.3 18.5 23.0 28.5 48.2 392 3.6 9.2 14.6 20.2 30.4
ALL 23,565 12.3 20.4 25.3 31.9 48.9 5,544 3.5 9.7 16.5 23.0 34.9
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models are shown in Table 2. The covari
ate distributions were quite similar for both 
sets of monitors. As shown in Figure 1, the 
cohort participants are located throughout the 
continental U.S., and most live close to the 
monitoring locations. Specifically, the cohort 
members lived a median distance of 10.2 km 
from PM10 monitoring sites and 16.6 km from 
NO2 sites. Seventyfive percent of the cohort 
was no more than 21.1 km from a PM10 moni
tor included in the model and 35.6 km from 
an NO2  monitor included in the model. 

PM10. The model with only the spatial 
spline and calendar year indicator variables had 
a model R2 of 0.48. Region of the country, dis
tance to all three census classes of road, block 
group population density, elevation, propor
tion of lowintensity residential, highintensity 
residential, and industrial, commercial, or 
transportation land use within 1 km were all 
statistically significant independent predictors 
of measured PM10 concentrations in univariate 
models. In a multivariate model, all predictors 
except population density (p = 0.15) remained 
statistically signifi cant predictors of meas
ured PM10 annual concentrations (Table 3). 
Population density was removed from the final 
model, because it did not increase the cross 
validation R2 or model fit as determined by 
AIC. The final model had an R2 of 0.49. 

Increases in the proportion of surrounding 
land use used for highintensity residential 
or for industrial, commercial, or transporta
tion uses were associated with increases in 

measured PM10 levels. Increases in all other 
covariates were associated with decreases in 
measured PM10. The cross validation R2 of 
the final model was 0.55. The median [and 

Table 2. Summary of the GISderived covariates for the PM10 and NO2 monitors evaluated in exposure models, by percentile.
PM10 NO2

Covariate 5th 25th 50th 75th 95th 5th 25th 50th 75th 95th
Block group population density (people/km2) 2 203 1,643 3,917 9,343 5 132 2,139 4,919 14,790
Elevation (meters above sea level) 4 84 214 684 1,836 4 28 150 275 1,314
Land use within 1 km (%)

Low-intensity residential 0.0 4.6 19.2 36.9 61.9 0.0 2.5 17.6 35.0 63.3
High-intensity residential 0.0 0.0 3.4 17.7 45.0 0.0 0.0 3.3 18.0 47.6
Industrial, commercial, transportation 0.0 5.0 15.8 30.9 59.1 0.0 3.2 12.5 26.0 57.4

Distance to nearest road (km)
A1 road 0.13 0.8 2.5 11.4 75.6 0.16 0.7 2.0 5.3 43.0
A2 road 0.06 0.4 1.7 6.4 34.9 0.09 0.7 2.6 7.2 30.6
A3 road 0.04 0.4 1.2 3.0 13.2 0.05 0.4 1.4 3.5 13.1

Distance to nearest power plant (km) 1.42 3.7 8.39 17. 7 39.8
NOx emissions of nearest power plant (tons) 0.9 24.1 113.6 893.8 12275.4

Figure 1. TrIPS cohort members and monitoring locations for PM10 and NO2. 

TrIPS cohort members 
PM10 monitor  
NO2 monitor 

Table 3. Summary of the fit and statistical significance of the GISderived variables included in the final 
generalized additive models.a

PM10 model 
(µg/m3) p-Valueb

NO2 model 
(ppb) p-Valueb

Model R 2 0.49 0.88
Cross-validation R 2 0.55 0.90
Regression intercept and slopec 1.49, 0.94 0.00, 1.04
Median (IQR) prediction error 0.24 (7.0) 0.10 (3.7)
RMSPE 9.1 3.5
Final model GIS-derived variables Direction of 

associationd
Direction of 
associationd

Population density Positived < 2 × 10–16

Elevation Negatived < 2 × 10–16 Negative < 2 × 10–16

Percent low-intensity residential 
 land use within 1 km

Negative 2.04 × 10–13 Positive 1.79 × 10–6

Percent high-intensity residential  
 land use within 1 km

Positive 1.26 × 10–5 Positive < 2 × 10–16

Percent ICT land use within 1 km Positive < 2 × 10–16 Positive < 2 × 10–16

Distance to A1 road Negative 0.05 Negative < 2 × 10–16

Distance to A2 road Negative 5.03 × 10–8 Negative 5.01 × 10–16

Distance to A3 road Negative 4.47 × 10–3 Negative 4.50 × 10–3

Distance to power plante Negative 1.66 × 10–9

NOx emissions from nearest plant Positive 9.77 × 10–4

Abbreviations: ICT, percentage of land used for industrial, commercial, or transportation; IQR, interquartile range; differ
ence between the 75th and 25th percentile. Population density excluded from final PM10 model.
aAll models also include indicator variables for region of the country. bR does not provide exact pvalues for those < 2 × 
10–16. cRegression slope is linear regression of observed measurements at the holdout locations on model predictions at 
those locations. dNegative or positive. eDistance to and NOx from the nearest power plant were not considered for PM10.
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interquartile range (IQR)] prediction error 
of the final model was 0.24 (7.0) µg/m3. The 
intercept and slope from the regression of 
observed and predicted meas urements were 
1.49 and 0.94, respectively, and the RMSPE 
was 9.1 µg/m3. A plot of the observed versus 
expected values from the crossvalidation is 
presented in Supplemental Material, avail
able online (doi:10.1289/ehp.0900840.S1 via 
http://dx.doi.org/).

NO2. The model with only the spatial 
spline and calendar year indicators had a 
model R2 of 0.73. Region of the country, 
distance to road, block group population den
sity, elevation, surrounding land use, distance 
to nearest NOxemitting power plant, and 
the level of emissions from that power plant 
were all statistically significant predictors of 

measured NO2 concentrations in univariate 
models. In a multivariate model, all predic
tors remained statistically significant predic
tors of measured NO2 annual concentrations 
(Table 3). The final multivariate model had an 
R2 of 0.88. Increases in the block group popu
lation density, NOx emissions of the nearest 
power plant, and the proportion of surround
ing land use used for low or highintensity 
residential or for industrial, commercial, 
or transportation uses were associated with 
increases in measured NO2 levels. Increases 
in all other covariates were associated with 
decreases in measured NO2. The cross vali
dation R2 of the final model was 0.90. The 
median (and IQR) prediction error of the 
final model was 0.10 (3.7) ppb, the inter
cept and slope of the regression of observed 

and predicted measurements were 0.00 and 
1.04, and the RMSPE was 3.5 ppb. A plot of 
the observed versus expected values from the 
crossvalidation is presented in Supplemental 
Material (doi:10.1289/ehp.0900840.S1).

Comparison with IDW. A summary of 
the crossvalidation parameters for the IDW 
exposure models is presented in Table 4. For 
both pollutants, the crossvalidation R2 of 
the IDW model (R2 = 0.44 for PM10 and 
0.67 for NO2) was lower than those from 
the GAMs (R2 = 0.55 for PM10 and 0.90 for 
NO2). For PM10, the slope from regression 
for the IDW model was 0.76 and the slope 
for the GAM was 0.94, indicating greater 
accuracy. The median prediction error for 
the IDW model was almost half that of the 
GAM, also indicating greater accuracy, but 
the RMSPE was higher, indicating lower pre
cision. In contrast, for NO2 the IDW predic
tion error was 10fold higher than the GAM, 
and the RMSPE was almost twice as large.

TrIPS cohort exposures. The distribution 
of the GISderived variables for the residential 
addresses (n = 53,822) of the TrIPS cohort 
is presented in Table 5. The home addresses 
tended to be further away, on average, from 
each of the census road classes and from power 
plants than the monitors used to develop the 
models. The addresses were also located in 
areas with a lower proportion of highintensity 
residential or industrial, commercial, or trans
portation land use, and the addresses were 
located further away from power plants than 
monitors, with lower annual emissions of NOx 
from the nearest plant, on average. The distri
butions of the covariates tended to be tighter 
than those of the monitoring locations but 
were not significantly different. 

Figure 2 shows the distribution of the 
pollution values for each year at the cohort 
addresses. The mean predicted levels of the 
two pollutants decreased over the followup 
period, although there was little change in the 
overall spread of the distributions. The spatial 

Table 4. Comparison of the predictive performance of general additive generalized additive models 
(GAM) and inverse distance weighted exposure models.

PM10 (µg/m3) NO2 (ppb)
Exposure model GAM IDW GAM IDW
Cross-validation R 2 0.55 0.44 0.90 0.67
Regression intercept and slopea 1.49, 0.94 6.44, 0.76 0.00, 1.04 0.00, 1.00
Median (IQR) prediction error 0.24 (7.0) 0.11 (6.1) 0.10 (3.7) 1.00 (7.5)
RMSPE 9.1 10.5 3.5 6.5
aRegression slope is linear regression of observed measurements at the holdout locations on model predictions at 
those locations.

Table 5. Summary of GISderived covariates, by percentile, for TrIPS cohort member residential addresses.
Covariate distribution

Covariate 5th 25th 50th 75th 95th
Block group population density (people/km2) 42 300 1,686 4,382 10,162
Elevation (m above sea level) 14 125 209 294 1,126
Land use within 1 km (%)

Low intensity residential 0.0 6.2 23.7 41.8 66.5
High intensity residential 0.0 0.0 3.2 15.0 48.2
Industrial, commercial, transportation 0.0 1.0 4.6 11.7 28.3

Distance to nearest road (km)
A1 road 0.3 1.3 3.1 7.1 23.5
A2 road 0.2 1.0 2.8 7.1 17.6
A3 road 0.1 0.6 1.7 6.3 8.1

Distance to nearest power plant (km) 2.8 6.8 11.7 19.4 39.9
NOx emissions of nearest power plant (tons) 0.3 7.9 76.0 720.5 8,934.5

Figure 2. Distrubution of annual GAMpredicted PM10 (A) and NO2 (B) values (by percentile) at the TrIPS cohort addresses. 
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distributions of the predictions for both PM10 
and NO2 are shown in Figure 3. At all three 
time points shown, PM10 values are higher in 
the western half of the United States than in 
the east. For NO2, however, the levels in all 
time periods are highest in major cities. To 
compare the two prediction methods, Figure 4 
shows the cohort predictions for PM10 at base
line (1985), midpoint (1993), and last year 
of followup (2000). There is moderate cor
relation between the results of the GAM and 
IDW PM10 models, although the IDW mod
els tend to be lower than the predictions of 
the GAMs (thus their lower slope of 0.76 vs. 
0.94 for the GAM when both are compared 
with measured concentrations). The Spearman 
correlations between the two prediction types 
were 0.66 for 1985, 0.64 for 1993, and 0.77 
for 2000. As shown in Figure 4, there is also 
moderate correlation between the GAM and 
IDW NO2 models. Specifically, the Spearman 
correlation is 0.63 for 1985, 0.53 for 1993, 
and 0.51 for 2000. Overall, the IDW models 
tend to be lower than the GAM predictions 
and tend to have less variance (heterogeneity). 

Discussion
Our results show that GAMs with a combina
tion of spatial smoothing and GISderived 
covariates are a practical method for predict
ing annual outdoor air pollution values for a 
cohort dispersed across the continental United 
States. The PM10 and NO2 GAM models 
were reasonably accurate and precise. The final 
model for NO2 had a model R2 of 0.88 and a 
crossvalidation R2 of 0.90, whereas the final 
model R2 for PM10 was 0.49 and the cross
validation R2 was 0.55. Overall, the GAMs 
for both PM10 and NO2 outperformed the 
simpler IDW models, although there was a 
greater difference in the performance of the 
two modeling approaches for NO2.

As expected, based on the growing lit
erature of landuse regression models, many 
GISderived predictors were important in the 
pollution models. Distance to the nearest road 
of each road class, distance to and emissions 
from the nearest power plant, and landuse 
terms defining the surrounding area, variables 
previously shown to represent major sources of 
ambient NO2 in the United States (U.S. EPA 
2007b), were all statistically significant predic
tors of NO2. In PM10 models, distance to the 
nearest road of each road class was the most 
important class of predictors, likely representing 
traffic, an important local source of particulate 
matter (U.S. EPA 2004). These covariates did 
not improve the model R2 as much for PM10 
as they did for NO2. It is possible that there are 
other important sources of PM10 that we have 
not included (e.g., sea salt, crustal materials) 
that would improve the model R2 more.

A growing number of studies have used 
spatial smoothing methods or models based 

on GISderived variables to predict ambient 
air pollution levels for use in epidemiologic 
studies (Adar and Kaufman 2007; Jerrett et al. 
2005a; Ryan and LeMasters 2007). Many of 
these studies have relied on proximity to spe
cific pollution sources or monitoring locations 
to assign exposures. Others have focused on 
characterizing pollution from a specific source, 
typically onroad vehicles (Hoek et al. 2001). 
The most commonly used GISbased methods 
have used information on traffic volume and 
distance to roadways as surrogates of expo
sure (Adar and Kaufman 2007; BayerOglesby 
et al. 2006; Forastiere and Galassi 2005; 
Garshick et al. 2003; Kan et al. 2007; Nitta 
et al. 1993; Oosterlee et al. 1996; Venn et al. 
2005). In many of these studies, distance to 
road is divided into categories, or individuals 
are classified as exposed or not exposed, based 
on an a priori chosen distance. This method 
likely leads to exposure misclassification in 
many of these studies and is likely also quite 
sensitive to the buffer or category size selected. 

Another popular GISbased exposure method 
is land use regression (Briggs et al. 1997; Hoek 
et al. 2001; Ryan and LeMasters 2007; Ryan 
et al. 2007; Su et al. 2008). This approach is 
typically used in smaller areas to model local 
spatial variability, and roadway networks 
and traffic are often inputs to these mod
els, although some also include information 
on surrounding land use, meteorology, and 
ambient air pollution monitoring locations. 
Other studies have used spatial smoothing 
techniques of the ambient measurements in 
single cities or counties (Jerrett et al. 2005b; 
Meng et al. 2007). Although direct compari
sons are not appropriate, our NO2 model 
R2 of 0.88 is higher than those observed in 
many landuse regression models (0.52‒0.76) 
(Briggs et al. 2000; Cyrys et al. 2005; Gilbert 
et al. 2005; Rosenlund et al. 2008) or in an 
EUwide model based on  ordinary kriging 
(Beelen et al. 2009). 

On a larger spatial scale, in an exposure 
assessment for the Women’s Health Initiative, 

Figure 3. Annual GAMpredicted PM10 (A) and NO2 (B) values at the TrIPS cohort addresses at the beginning 
(1985), middle (1993), and end (2000) of followup.
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kriging in ArcGIS was used to generate daily 
PM2.5 and PM10 estimates for the entire 
continental United States for the year 2000 
(Liao et al. 2006; Szpiro et al. 2007). For 
PM10, the authors report a median predic
tion error of 0.04 µg/m3 and an RMSPE of 
19.48 µg/m3. In a recent exposure assessment 
for the Nurses’ Health Study, a combination 
of spatial smoothing and GISderived cova
riates was used to produce monthly predic
tions of PM10 1988‒2002 for residences in 
the northeastern United States (Yanosky et al. 
2008). This model has a mean prediction error 
of ‒0.4 µg/m3 and an RMSPE of 6.4 µg/m3 
across the entire region, with no discernable 
differences by state or level of urbanization. 
Our models are similar to this modeling 
approach: Both include spatial smoothing and 
GISbased covariates to generate predictions. 
The Yanosky model allows the generation of 
monthly estimates of PM10 through a complex 
spatiotemporal model and allows the inclu
sion of timevarying covariates and control for 
seasonality. In contrast, although the model 
presented here also uses spatial smoothing and 
GISbased covariates, it is more appropriate 

for annual means and is less computationally 
intensive. Therefore, for PM10, the amount of 
bias [measured by average (mean or median) 
prediction error] and precision (measured by 
RMSPE) in our final model are comparable to 
that of other studies in the United States.

Our exposure model has several impor
tant limitations. We rely on air pollution data 
from existing networks that are not uniformly 
distributed across the continental United 
States. However, the measures of precision and 
accuracy determined by crossvalidation for 
the heldout monitoring locations indicated 
good predictive performance of the models. 
Additionally, most of the members of the 
specific cohort we are using in this analysis 
live close to monitoring locations, so the mis
match between monitor and subject locations 
is unlikely to be a large source of error in expo
sure for our chosen application. For studies 
where the cohort is located much further from 
monitoring locations, this would likely be a 
larger source of error. In focusing our model
ing on annual means, we are likely missing 
important seasonal and temporal variability 
occurring within each year. In years with fewer 

monitoring locations, it is possible that our 
model is underpowered to detect annual dif
ferences from the longterm spatial trends; 
however, in later years, only 20‒40 degrees 
of freedom were needed to fit these surfaces, 
so this may not be a large issue. Our model 
also does not include information on time
varying covariates (such as pointsource pol
lution or weather, especially wind direction 
and speed, mixing height, and precipitation) 
or interactions between our chosen covariates 
and calendar year. It is likely that information 
on these factors would improve the predic
tive ability of our model; however, it would 
require a different modeling approach than the 
one we have chosen. By treating population 
density, distance from road, and land use as 
time invariant, we are assuming that these did 
not vary during the study period. This is not 
likely to be true and will lead to increased error 
in areas with rapidly changing infrastructure 
during this time period. Finally, we are using 
a spatial smoothing model for the entire con
tinental United States. It has been suggested 
that regional models may be more appropri
ate for the continental United States (Szpiro 
et al. 2007); however, it has been shown that 
for daily predictions, regional models do not 
substantially outperform a single countrywide 
model (Liao et al. 2006). Our models are 
adjusted for region of the country (using indi
cator variables), and although including region 
did improve the fit of the models, the regional 
terms themselves were not significant.

Conclusions
In conclusion, our air pollution exposure model 
combining spatial smoothing techniques and 
GISbased predictors is a useful way to provide 
estimates of U.S.wide annual exposures for 
PM10 and NO2. These models can be used to 
produce reasonably accurate and precise mea
sures of pollution at the residential addresses 
of participants in epidemiologic studies focus
ing on the adverse effects of constituents of air 
 pollution as far back as 1985.
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